19,937 research outputs found

    Finite elements for contact problems in two-dimensional elastodynamics

    Get PDF
    A finite element approach for contact problems in two dimensional elastodynamics was proposed. Sticking, sliding, and frictional contact were taken into account. The method consisted of a modification of the shape functions, in the contact region, in order to involve the nodes of the contacting body. The formulation was symmetric (both bodies were contactors and targets), in order to avoid interpenetration. Compatibility over the interfaces was satisfied. The method was applied to the impact of a block on a rigid target. It is shown that the formulation can be applied to fluid structure interaction, and to problems involving material nonlinearity

    High-resolution imaging of ultracold fermions in microscopically tailored optical potentials

    Full text link
    We report on the local probing and preparation of an ultracold Fermi gas on the length scale of one micrometer, i.e. of the order of the Fermi wavelength. The essential tool of our experimental setup is a pair of identical, high-resolution microscope objectives. One of the microscope objectives allows local imaging of the trapped Fermi gas of 6Li atoms with a maximum resolution of 660 nm, while the other enables the generation of arbitrary optical dipole potentials on the same length scale. Employing a 2D acousto-optical deflector, we demonstrate the formation of several trapping geometries including a tightly focussed single optical dipole trap, a 4x4-site two-dimensional optical lattice and a 8-site ring lattice configuration. Furthermore, we show the ability to load and detect a small number of atoms in these trapping potentials. A site separation of down to one micrometer in combination with the low mass of 6Li results in tunneling rates which are sufficiently large for the implementation of Hubbard-models with the designed geometries.Comment: 15 pages, 6 figure

    Transition from connected to fragmented vegetation across an environmental gradient: scaling laws in ecotone geometry

    Get PDF
    A change in the environmental conditions across space—for example, altitude or latitude—can cause significant changes in the density of a vegetation type and, consequently, in spatial connectivity. We use spatially explicit simulations to study the transition from connected to fragmented vegetation. A static (gradient percolation) model is compared to dynamic (gradient contact process) models. Connectivity is characterized from the perspective of various species that use this vegetation type for habitat and differ in dispersal or migration range, that is, “step length” across the landscape. The boundary of connected vegetation delineated by a particular step length is termed the “ hull edge.” We found that for every step length and for every gradient, the hull edge is a fractal with dimension 7/4. The result is the same for different spatial models, suggesting that there are universal laws in ecotone geometry. To demonstrate that the model is applicable to real data, a hull edge of fractal dimension 7/4 is shown on a satellite image of a piñon‐juniper woodland on a hillside. We propose to use the hull edge to define the boundary of a vegetation type unambiguously. This offers a new tool for detecting a shift of the boundary due to a climate change

    Leading RG logs in ϕ4\phi^4 theory

    Get PDF
    We find the leading RG logs in ϕ4\phi^4 theory for any Feynman diagram with 4 external edges. We obtain the result in two ways. The first way is to calculate the relevant terms in Feynman integrals. The second way is to use the RG invariance based on the Lie algebra of graphs introduced by Connes and Kreimer. The non-RG logs, such as (lns/t)n(\ln s/t)^n, are discussed.Comment: 24 pages LaTeX, 12 figure

    Magnetic Fields in Dark Cloud Cores: Arecibo OH Zeeman Observations

    Full text link
    We have carried out an extensive survey of magnetic field strengths toward dark cloud cores in order to test models of star formation: ambipolar-diffusion driven or turbulence driven. The survey involved 500\sim500 hours of observing with the Arecibo telescope in order to make sensitive OH Zeeman observations toward 34 dark cloud cores. Nine new probable detections were achieved at the 2.5-sigma level; the certainty of the detections varies from solid to marginal, so we discuss each probable detection separately. However, our analysis includes all the measurements and does not depend on whether each position has a detection or just a sensitive measurement. Rather, the analysis establishes mean (or median) values over the set of observed cores for relevant astrophysical quantities. The results are that the mass-to-flux ratio is supercritical by 2\sim 2, and that the ratio of turbulent to magnetic energies is also 2\sim 2. These results are compatible with both models of star formation. However, these OH Zeeman observations do establish for the first time on a statistically sound basis the energetic importance of magnetic fields in dark cloud cores at densities of order 103410^{3-4} cm3^{-3}, and they lay the foundation for further observations that could provide a more definitive test.Comment: 22 pages, 2 figures, 2 table

    Functional Motions of Immunoglobin Hypervariable Loops

    Get PDF
    corecore